紫外線式火焰檢測器和探頭: 探頭與處理器間信號的傳輸采取電流傳輸方式,以提高抗干擾能力,并通過兩芯/三芯電纜傳至處理器。處理器將由探頭傳來的信號通過匹配電路觸發電路進行處理后,進行有、無火判別,并給出相應指示及輸出。隧道火焰探測綜合盤本探測器能夠對日光、閃電、電焊、人工光源、熱輻射、電磁干擾、機械振動等干擾有很好的,從而實現了對火警信號的快速響應和準確識別。本探測器采用非接觸式探測,靈敏度現場可調,提供無源接點和標準電流輸出與火災報警系統相連接。
硫化鉛(PbS)感測器,這是一種硫化鉛光敏電阻,其特點是對紅外線輻射特別敏感。燃料在燃燒時,由化學反應產生閃爍的紅外線輻射,使硫化鉛光敏電阻感應,轉變成電信號,再經放大器處理后,輸出4-20mA 或 0-10V 的模擬量。在光譜中,紅外線的波長為600nm 以上,而這種硫化鉛感測器的光譜靈敏度為600nm-3000nm,對絕大部分紅外線輻射都可以有效采集,同時還涵蓋了部分可見光中的紅光,這樣充分保證采集到火焰信號的真實性。 磷化鉀(GaP)感測器,它是一種磷化鉀光敏電阻,其特點是對紫外線輻射特別敏感。燃料在燃燒時,由化學反應產生閃爍的紫外線輻射,使磷化鉀光敏電阻感應,轉變成電信號,再經放大器處理后,輸出4-20mA 或 0-10V 的模擬量。在光譜中,紫外線的波長小于380nm,而這種硫化鉛感測器的光譜靈敏度為190nm-550nm,對絕大部分紫外線輻射都可以有效采集,同時還涵蓋了大部分可見光中的紫光,同樣這樣充分保證采集到火焰信號的真實性。
燃燒器火焰的形狀,我們人為地將其分為四部分:從喉口開始依次為黑龍區、初始燃燒區、燃燒區和燃燼區。 從一次風口噴射出的第一段是一股暗黑色的煤粉和一次風的混合物流,我們稱其為黑龍區,其輻射強度和閃爍頻率都很低; 第二段是初始燃燒區,煤粉因受到高溫爐氣和火焰回流的加熱開始燃燒,大量煤粉顆粒爆燃形成亮點流,此段的特點是這部分煤粉燃燒亮度不是很大,但其閃爍頻率卻達到最大值,往往可以在100Hz 以上; 第三段為燃燒區,也稱完全燃燒區,各個煤粉顆粒在與二次風的充分混合下完全燃燒,產生出很大熱量,此段的火焰亮度最高且最穩定,但閃爍頻率要低于初始燃燒區; 第四段為燃燼區,這時的煤粉絕大部分燃燒完畢形成飛灰,少數較大的顆粒繼續進行燃燒,最后形成高溫爐氣流,其火焰亮度和閃爍頻率都比較低。有一點需要說明,上面提到的頻率是指閃爍(Flicker)頻率,它和有些火焰檢測器中的脈沖(Pulse)頻率有本質區別,前者是燃料混合物火焰燃燒所特有的屬性,而后者只是對火焰強度的一種顯示方法。